Алгебра, опубликовано 2018-08-22 23:12:20 by Гость
Решить уравнение tg5x+ctg5x=4 4cos^2x-12sin(П-x)+3=0
Ответ оставил Гость
!) tg5x + ctg5x = 4
Применяем основное тригонометрическое тождество:
1 /[sin(5x)*cos(5x)] = 4
1 = 4*[sin(5x)*cos(5x)]
2sin(10x) = 1
sin10x = 1/2
10x = (-1)^(n)*arcsin(1/2) + πn, n∈Z
10x = (-1)^(n)*(π/6) + 2πn, n∈Z
x = (-1)^(n)*(π/60) + πn/5, n∈Z
2) 4cos^2x-12sin(П-x)+3=0
4*(1 - sin²x) - 12sinx + 3 = 0
4 - 4sin²x - 12sinx + 3 = 0
4sin²x + 12sinx - 7 = 0
six = t
4t² + 12t - 7 = 0
D = 144 + 4*4*7 = 256
t₁ = (-12 - 16)/2
t₁ = - 14 не удовлетворяет условию: IsinxI ≤ 1
t₂ = (-12 + 16)/2
t₂ = 2 не удовлетворяет условию: IsinxI ≤ 1
Решений нет
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.
