Аватар
Алгебра, опубликовано 2018-08-22 23:14:50 by Гость

Прямая BM перпендикулярна к плоскости прямоугольника ABCD. докажите что прямая по которой пересекаются плоскостиADM и BCM,перпендикулярна к плоскости ABM

Аватар
Ответ оставил Гость

Достроим треугольник DAM до параллелограмма AMED.
ME || AD || BC
Поэтому точка E лежит в плоскости ADM и лежит в плоскости BCM.
Следовательно ME и есть прямая пересечения ADM и BCM
ME=BC и ME || BC, следовательно BMEC параллелограмм
угол MBC прямой, BMEC -- прямоугольник, следовательно ME перпендикулярно BM.
угол BAD прямой, следовательно, MAD -- тоже прямой (теорема о 3 перпендикулярах) , следовательно AMED -- прямоугольник, следовательно, ME перпендикулярно AM.
ME перпендикулярно AM и BM, следовательно, ME перпендикулярно плоскости ABM.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.