Алгебра, опубликовано 2018-08-22 22:38:15 by Гость

Докажите что при любом натуральном а значение выражения a^3 +3a^2+2a кратно 6

Ответ оставил Гость

Разложим данный многочлен на множители
a³+3a²+2a=a(a²+3a+2)=a(a+1)(a+2)

a²+3a+2=(a+1)(a+2)
D=3²-4*1*2=9-8=1
a₁=(-3+1)/2=-2/2=-1
a₂=(-3-1)/2=-4/2=-2

В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод:
 многочлен а³+3а²+2а  кратен  числу 6.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.