Алгебра, опубликовано 2018-08-22 23:56:50 by Гость

Существует ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 11?

Ответ оставил Гость

Предположим, что существуют два таких числа. Возьмём некое число а, сумма цифр которого делится на 11. Тогда обязательно будет сущестовать число b, отличное от а на единицу и кратное 11. Но это невозможно, т.к. сумма цифр последовательных чисел может не может изменяться на й
11. Значит, предположение неверно. То есть таких чисел не существует.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.