Геометрия, опубликовано 2018-08-22 21:25:49 by Гость

Ребро правильного тетраэдра равно а.Чему равен равен радиус полусферы,касающейся боковых граней тетраэдра, центр которой лежит на основании тетраэдра?

Ответ оставил Гость

Вот вам решение, над которым придется подумать :))))
Если ребро у тетраэдра равно b,
то высота H = b√6/3;
радиус вписанной сферы r = b√6/12 = H/4;
Если теперь сделать сечение параллельно одной из граней (назовем его "основанием") через центр вписанной сферы, то получится новый тетраэдр как раз с вписанной в него полусферой именно так, как задано в задаче.
Очевидно, что ребро такого тетраэдра a = 3b/4;
или, отсюда
r = a√6/9;

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.