Геометрия, опубликовано 2018-08-22 21:36:54 by Гость

Площадь полной поверхности прямого кругового конуса равна 253 см2 , а площадь боковой поверхности -11см2. Найдите длину образующей конуса

Ответ оставил Гость

Площадь боковой поверхности конуса вычисляется по формуле:
Sбок = πRL (R - радиус основания,  L - длина образующей)
Площадь полной поверхности конуса равна:
Sпол = Sбок + πR²
253 = 11 + πR² ---> πR² = 253 - 11 = 242 ---> R = √(242/π)
Подставим в формулу для площади боковой поверхности
11 = πL · √(242/π)
121 = π²L²·242/π
L² = 121/(242π) = 1/(2π)
L = 1/√(2π)
Ответ: 1/√(2π)

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.