Геометрия, опубликовано 2018-08-22 22:25:19 by Гость

AL и BM биссектрисы треугольника ABC. Известно что одна из точек пересечения описанных окружностей треугольников ACL и BCM лежит на отрезке AB. Докажите что угол ACB равен 60 градусов

Ответ оставил Гость

Пусть F - точка пересечения окружностей на стороне АВ.
Угол ВАL= LAC= альфа
Угол ABM=MBC= бета 
Тогда углы MCF=MBF=бета и LCF=LAF=альфа ,как опирающиеся на равные дуги.
Угол ACB=альфа+бета ,а сумма углов треугольника АВС равна 3(альфа+бета) ,из чего следует,что Угол АСВ=60 градусов

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.