Геометрия, опубликовано 2018-08-22 23:31:59 by Гость

Чему равна сумма внешних углов правильного n-угольника, если при каждой вершине взято по одному внешнему углу?

Ответ оставил Гость

Прибавим к каждому из этих внешних углов смежный с ним внутренний угол. При каждой вершине получится угол в 180°, следовательно, общая полученная сумма равна 180n градусов.
Далее, существует теорема, что сумма внутренних углов любого выпуклого (насчет невыпуклых - не знаю. Вполне возможно, что тоже верно) многоугольника равна 180(n-2), это доказывается при помощи разбиения многоугольника на n треугольников с общей вершиной A внутри многоугольника, сложения углов всех треугольников(180*n) и вычитания полного оборота при A. По чертежу очевидно, что оставшиеся углы, взятые по парам, составляют все внутренние углы многоугольника.

Таким образом, искомая сумма внешних углов равна разности полученной суммы и добавленных углов, или 180n - 180*(n-2)=360°
Ответ: 360.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.