Геометрия, опубликовано 2018-08-22 00:03:46 by Гость

Радиус основания конуса с вершиной Р = 6,длина образующей = 9. На окружности основания выбраны точки А и В,делящую окружность на дуги в отношении 1:3.Найти площадь сечения конуса проходящего через точки А, В , Р.

Ответ оставил Гость

1 + 3 = 4
360: 4 = 90 ( малая дуга АВ)
ΔАОВ - прямоугольный с катетами = R= 6.
Ищем АВ по т. Пифагора.
АВ² = 6² + 6² = 72 ⇒ 6√2
ΔАВР - это сечение. Надо найти его площадь
Высота  в нём = 3√7
S = 1/2·6√2·3√7 = 9√14

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.