Геометрия, опубликовано 2018-08-22 00:07:45 by Гость

Помогите пожалуйста. Даны вершины треугольника А ( 1; 1) В ( 4; 1 ) С ( 4; 5 ). Вычислите косинусы его углов

Ответ оставил Гость

Найдем координаты и модули векторов.
АВ{(4-1);1-1)} или АВ{3;0}, |AB|= √(3²+0) = 3.
ВС{(4-4);5-1)} или ВС{(0;4)}, |ВС|= √(0+4²) = 4.
АС{(4-1);5-1)} или АС{(3;4)}, |АС|= √(3²+4²) =5.
Формула косинуса угла между вкуторами 1 и 2:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае угол между векторами АВ и ВС:
cos(угол между векторами АВ и АС:
cos(угол между векторами ВС и АС:
cos(Ответ: cosA=3/5, cosB=0, cosC=4/5.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.