Геометрия, опубликовано 2018-08-22 22:31:44 by Гость

В параллелограмме ABCD окружность, описанная около треугольника АBD, касается прямой СВ. Найдите площадь параллелограмма, если (угол АВС = , ВD = 2.

Ответ оставил Гость

Если угол АВС = 3π/4 = 3*180/4 = 135°, то угол А = 180 - 135 = 45°.
Это говорит о том, что треугольник АВД равнобедренный. АВ = ВД = 2, а угол АВД = 90°.
Высота параллелограмма H = АВ*sin 45 = 2*(√2/2) = √2.
Основание АД = 2/cos 45 = 2/(√2/2) = 4/√2.
Площадь S = AD*H = (4/√2)*√2 = 4.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.