Геометрия, опубликовано 2018-08-22 22:35:45 by Гость

В конус с углом φ при вершине осевого сечения и радиусом основания r вписана сфера радиуса R (т. е. сфера касается основания конуса и каждой его образующей, рис. 158, а). Найдите: а) r, если известны R и φ; б) R, если известны r и φ; Помогите, расписывая досконально до мелочей

Ответ оставил Гость

Рассмотрим осевое сечение. Это равнобедренный треугольник с основанием диаметр основания конуса и боковыми сторонами образующие конуса. Угол между боковыми сторонами пси, длина основания 2r, радиус вписанной окружности R. Центр этой окружности - пересечение биссектрис. Высота из вершины конуса совпадает с биссектрисой по свойству равнобедр. треугольника.Рассмотрим прямоугольный треугольник со сторонами высота, образующая, радиус основания. В нем верхний угол (пси/2), при основании соотв. (90-пси/2).И самый маленький треугольник с вершиной в центре круга, сторонами r, R и часть биссектрисы угла (90-пси/2). Он так же прямоугольный. Соотв. Угол в нем при центре круга (90-(90-пси/2)/2)=(45+пси/4). Этот треугольник связывает все наши данные воедино - катеты r и R, угол при катете R (45+пси/4). Остается только выразить.r/R = tg(45+пси/4)Ответ:а) r = R*tg(45+пси/4)б) R = r/tg(45+пси/4)

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.