Геометрия, опубликовано 2018-08-22 02:41:28 by Гость
Высота конуса разбита на три равные части.Через точки деления проведены плоскости,параллельные плоскости основания конуса.Длина отрезка,соединяющего центр меньшего сечения с точкой окружности другого сечения,равна 5 см.Вычислите длину радиуса основания конуса,если длина его высоты равна 9 см
Ответ оставил Гость
АВ - высота конуса (равна 9 см по условию) . ВС - радиус основания. АВ делится на три равные части точками Д и Е, соответственно АД=ДЕ=ЕВ=3см (9 см/3)
ЕФ - радиус большего сечения (параллельно ВС - радиусу основания) . ДФ = 5 (по условию) . По т. Пифагора ЕФ*ЕФ=ДФ*ДФ-ДЕ*ДЕ, тогда ЕФ=4. Далее по подобию треугольников АЕ/ЕФ=АВ/ВС. 6/4=9/х, х=6
Ответ: радиус основания ВС=6 см.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на