Геометрия, опубликовано 2018-08-22 02:52:43 by Гость
Найдите все углы образованные при пересечении двух параллельных прямых а и б секущей с если один из углов в 5 раз больше другого. Объясните все.Заранее спасибо.
Ответ оставил Гость
Пусть прямая а будет прямой АС, а прямая b прямой ВК, секущая - МО. МО пересекает АС в точке Р, а ВК - в точке Х. Пусть угол АРМ=5 углов МРС. Пусть угол МРС=у, тогда угол АРМ=5у. Угол МРС = угол АРО как вертикальный, равен углу МХК как соответственный и равен углу ВХО, потому что он вертикален углу МХК. Аналогично угол АРМ=угол ХРС = угол ВХР = угол ОХК.
Углы АРМ и МРС смежные, значит, 5у+у=160, 6у=180, у=30. Значит, угол МРС и равные ему равны 30 градусов, а угол АРМ и равные ему равны 150 градусов.
Ответ: 30 и 150 градусов.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на