Угол С равен 180 - 40 - 20 = 120°.
Выразим сторону ВС за х, а сторону АВ за х + 4 (по условию задачи).
По теореме синусов:
sin120° = 0.866025,
sin 40° = 0.642788.
Тогда
Используем свойство пропорции:
(х + 4) / х = 0.866025 / 0.642788 = 1.347296.
Отсюда х = 4 / (1.347296 - 1) = 11.51754 (это сторона ВС).
Сторона АВ равна 11.51754 + 4 = 15.51754.
Далее по двум сторонам и углу между ними по теореме косинусов находим сторону АС:
Подставив значения, получаем АС = в = 6.128356.
Имея длины всех сторон треугольника, находим длину биссектрисы угла С:
Подставляем данные:
a b c p 2p
11.517541 6.1283555 15.517541 16.581719 33.16343748
и получаем: βа βв βс
8.2567 13.0208 4.
Ответ: длина биссектрисы из угла С равна 4.
Форма вопроса доступна на