Геометрия, опубликовано 2018-08-22 22:51:32 by Гость

Дан ромб со стороной 1/√π и острым углом 60°. На его большой диагонали как на диаметре построена окружность. Найти площадь круга.

Ответ оставил Гость

Ромб АВСД: АВ=ВС=СД=АД=1/√π, острый Здесь применяются свойства диагоналей ромба АС и ВД:
1) диагонали ромба пересекаются в точке О и точкой пересечения делятся пополам (АО=ОС, ВО=ВД);
2) диагонали ромба взаимно перпендикулярны и являются биссектрисами его углов (.
Из прямоугольного ΔАВО:
ВО=АВ*cos 30=1/√π*√3/2=√3/2√π
Большая диагональ ВД, значит ВО - это радиус окружности
Площадь S=π*ВО²=π*(√3/2√π)²=3/4=0,75

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.