Геометрия, опубликовано 2018-08-22 03:52:41 by Гость
Задана окружность с центром О и с хордой CD. Радиус OE проведен перпендикулярно хорде CD. Докажите,что хорды CE и DE равны.
Ответ оставил Гость
Т.к. CD хорда, а значит C и D точки окружности, а значит OC=OD, значит треугольник OCD равнобедренный, а значит перпендикуляр проведенный к хорде CD из O является высотой, а также медианой и биссектрисой.
а значит угол СOE=EOD, следовательно треугольник СOE=OED по двум сторонам (OC=OD, OE общая) и углу между ними.
А значит EC=ED
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на