Геометрия, опубликовано 2018-08-22 22:53:45 by Гость

Диагонали AC и BD четырёх угольника ABCD пересекаются в точке О, АО=18 см, ОВ=15 см, ОС=12 см, OD=10 cм. Докажите что ABCD трапеция

Ответ оставил Гость

18/12 = 15/10

AO/OC = BO/OD

∠AOB=∠COD (вертикальные углы равны)

Если угол (∠AOB) одного треугольника равен углу (∠COD) другого треугольника, а стороны, образующие этот угол (AO,OC; BO,OD), пропорциональны в равном отношении, то такие треугольники подобны.

△AOB ~ △COD

∠ABO=∠CDO

Если при пересечении двух прямых (AB; CD) секущей (BD) накрест лежащие углы (∠ABO; ∠CDO) равны, то прямые параллельны.

AB || CD

Из неравенства 18/15 ≠ 10/12 следует, что треугольники AOD и ВОС не подобны, ∠ADO≠∠CBO, AD не параллельна BC.

Трапеция - выпуклый четырёхугольник, у которого две стороны (AB; CD) параллельны, а две другие (AD; BC) не параллельны.

Четырёхугольник ABCD - трапеция.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.