Геометрия, опубликовано 2018-08-22 05:05:49 by Гость
Из одной точки к плоскости а проведены две наклонные одинаковой длины. Наклонные образуют между собой угол В, а их проекции на плоскость а-угол Ф. Найдите угол, который образует каждая наклонная с плоскостью а.
Ответ оставил Гость
Из точки А проведены 2 наклонные АВ=АС, перпендикуляр к плоскости АН.
Угол ВАС=β, угол ВНС=φ
Угол наклона АВ и АС к плоскости
Значит НВ=НС.
Из равнобедренного ΔСАВ по т.косинусов:
ВС²=2АВ²(1-cos β)
Из равнобедренного ΔСHВ по т.косинусов:
ВС²=2HВ²(1-cos φ)
Приравниваем 2АВ²(1-cos β) =2HВ²(1-cos φ)
НВ²=АВ²(1-cos β)/(1-cos φ)
Из прямоугольного ΔАВН сos α=НВ/АВ=√(1-cos β)/(1-cos φ)
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на