Геометрия, опубликовано 2018-08-22 05:35:32 by Гость

Из точки,не лежащей на прямой, проведены к этой прямой перпендикуляр и две наклонные. Найдите длину перпендикуляра, если наклонные равны 25 см и 30 см, а длины их проекций на данную прямую относятся как 7:18.

Ответ оставил Гость

Из точки А, не лежащей на прямой, проведены к этой прямой перпендикуляр АН и две наклонные АВ=25 и АС=30.
Проекции НВ:НС=7:18, откуда НС=18НВ/7
Из прямоугольного ΔАВН: АН²=АВ²-НВ²=625-НВ²
Из прямоугольного ΔАСН: АН²=АС²-НС²=900-(18НВ/7)²=900-324НВ²/49
625-НВ²=900-324НВ²/49
275НВ²/49=275
НВ²=49
Длина перпендикуляра АН=√(625-49)=√576=24

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.