Геометрия, опубликовано 2018-08-22 06:48:12 by Гость
В треугольнике АВС биссектриса ВD равна , а стороны АВ = 6 и ВС = 3. Точка М – середина стороны АВ. Отрезки ВD и СМ пересекаются в точке О. Найти АС и определить площадь четырехугольник АМОD.
Ответ оставил Гость
ВД=√10-биссектриса, АВ/ВС=АД/ДС=6/3=АД/ДС, 2/1=2х/х, АД=2х, ДС=х, АС=2х+х=3х, проводим высоту ВН на АС, площадь треугольника АВД=1/2*ВН*АД=1/2*2х*ВН=х*ВН, площадь ДВС=1/2*ДС*ВН=х*ВН/2, площадь АВС=1/2*АС*ВН=3х/2 * ВН, из отношения площадей находим площадь ДВС=1/3 площадиАВС, площадь АВД=2/3 площади АВС,
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на