Геометрия, опубликовано 2018-08-22 06:56:42 by Гость

Довести, що якщо діагоналі вписаного в коло чотирикутника взаємно перпендикулярні, то сума квадратів протилежних сторін чотирикутника дорівнює квадрату діаметра цього кола

Ответ оставил Гость

Пусть ABCD - наш четырехугольник.
sin(∠DAC)=sin(90°-∠ADB)=cos(∠ADB)=cos(∠ACB) т.к. диагонали перпендикулярны и углы ADB и АСВ равны как вписанные.

По теореме синусов 2R=AB/sin(∠ACB) и 2R=DC/sin(∠DAC), откуда
AB=2R·sin(∠ACB), DC=2R·sin(∠DAC)=2R·cos(∠ACB). Значит
AB²+DC²=4R²(sin²(∠ACB)+cos²(∠ACB))=4R².

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.