Геометрия, опубликовано 2018-08-22 06:59:02 by Гость
В окружности с центром О проведена хорда АВ. Отрезок ОС - радиус окружности, перпендикулярный к АВ. Докажите равенство углов CAH и CBH. P.s. Я не очень понимаю док-во теорем. Помогите пожалуйста
Ответ оставил Гость
Проведём отрезки ОА и ОВ, это радиусы окружности, поэтому они равны. Значит, треугольник АОВ - равнобедренный. И так как ОС перпендикулярно АВ, то ОН - высота треугольника АОВ. Так как он равнобедренный, АН=НВ. Теперь рассмотрим треугольник АСВ. СН - его высота, причём АН=ВН, значит, СН ещё и медиана, поэтому треугольник АСВ равнобедренный, а значит, угол САН= угол СВН. Доказано. (вопросы задавайте в комментарии, если появятся)
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на