Геометрия, опубликовано 2018-08-22 23:15:20 by Гость
Катеты прямоугольного треугольника АСВ (уголС=90градусов) равны АС=3см и ВС=4см. Проведена окружность (С,R), R=2,4 см. Каково взаимное расположение прямой АВ и этой окружности?
Ответ оставил Гость
Чтобы установить взаимное расположение АВ и окружности нужно вычислить расстояние от С до АВ, то есть высоту СМ.
АВ=√(АС²+ВС²)=5 см
Пусть АМ=х, тогда ВМ=5-х
В тр-ке АСМ СМ²=АС²-АМ²=9-х²
В тр-ке ВСМ СМ²=ВС²-ВМ²=16-(5-х)²
9-х²=16-(5-х)²
9-х²=16-25+10х-х²
10х=18
х=1.8
СМ=√(9-1.8²)=2.4 см
Т.к. радиус нашей окружности R=2.4 см равен высоте тр-ка СМ=2.4 см, то АВ - касательная к окружности.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на