Геометрия, опубликовано 2018-08-22 08:37:27 by Гость
Что это за задача вообще? о.о В квадрат ABCD вписана окружность. Касательная к окружности пересекает сторону АВ в точке М, а сторону АD в точке N. Докажите, что периметр треугольника MAN равен стороне квадрата
Ответ оставил Гость
Задача как задача. Пусть окружность касается стороны квадрата АВ в точке Е, стороны АD в точке F и касательной MN в точке K. Обозначим через b сторону квадрата. По свойству касательных FN=NK=x и ME=MK=y.
Тогда AM=AE-ME=b/2-y, AN=AF-FN=b/2-x, NM=NK+KM=x+y.
Периметр треугольника MAN равен AM+AN+NM=(b/2-y)+(b/2-x)+(x+y)=b, что и требовалось доказать.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на