Геометрия, опубликовано 2018-08-22 09:17:27 by Гость

В треугольнике АВС известно, что AB = 15 ,BC = 14, АС =13, а медиана АА1 пересекает биссектрису ВВ1 в точке P .Найдите площадь А1РВ1С

Ответ оставил Гость

Площадь треугольника АВС находим по формуле Герона
р=(15+14+13)/2=21
S(Δ АВС)=√21·(21-15)·(21-14)·(21-13)=84 см

S(ΔABA₁)=S(ΔACA₁)
В этих треугольниках основания A₁В=СA₁, а высота общая.

S(ΔACA₁)=42 см

Биссектриса ВВ₁ делит сторону АС в отношении 15:14
пропорционально прилежащим сторонам треугольника

АВ₁ =15 АС/29

Биссектриса ВР делит сторону АА₁ треугольника АВА₁ в отношении 15:7

AP=15AA₁ /22

S(ΔAPB₁ )=AP·AB₁ ·sin ∠A₁ AC/2=
=(15 ·AA₁ /22)·(15AC/29)·sin ∠A₁ AC/2=
=(225/638)·(AA·AC·sin ∠A₁ AC/2)=(225/638)·42

S(четырехугольника PA₁CB₁)=S(ΔAA₁C)-A(ΔAPB₁)=42-(225/638)·42=
=42·(1-(225/638))=413·42/638≈27,2

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.