Геометрия, опубликовано 2018-08-22 09:21:01 by Гость

В ромб АВСД вписана окружность. Точка касания окружности Г делит сторону ромба АВ на отрезки АГ и ГВ соответственно равны 2 и 8 см. Найдите радиус вписанной окружности.

Ответ оставил Гость

- ромб
Г∈ AB
AГ=2 см
ГB= 8 см
AC пересекает DB в точке O 
OГ=r
по свойству:
диагонали ромба взаимно перпендикулярны
Значит  - прямоугольный
ОГ перпендикулярен AB ( по свойству касательной)
Длина высоты прямоугольного треугольника, проведенная из вершины прямого угла , есть среднее пропорциональное между проекциями катетов на гипотенузу
т. е. OГ²=АГ*ГВ


см
Ответ: 4 см

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.