Геометрия, опубликовано 2018-08-22 11:49:11 by Гость
4.Два равных квадрата ABCD и MPKT расположены так,что точка P делит диагональ BD в отношении BP:PD=2:1, а точка D лежит на диагонали PT. Найдите площадь фигуры,состоящей из всех точек данных квадратов,если длина стороны каждого квадрата равна 3. желательно рисунок и дано тоже. Решать без подобия и тригонометрии. Ответ 17 но мне нужно решение
Ответ оставил Гость
ABCD - квадрат со стороной 3 площадью 3*3=9 диагональю 3*корень(2)
MPKT - квадрат со стороной 3 площадью 3*3=9 диагональю 3*корень(2)
ABCD и MPKT пересекаются
фигура пересечения - квадрат
диагональ квадрата PD равна ВД/3=1*корень(2), значит сторона квадрата 1 и площадь 1*1=1
площадь искомой фигуры 9+9-1=17
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на