Геометрия, опубликовано 2018-08-22 21:25:08 by Гость

Помогите решить sin(п/4+a) если sina=3/5 и а принадлежит промежутку (0до п/2)

Ответ оставил Гость

Sin(пи/4+a)=sin(пи/4)*cosa+sina*cos(пи/4), видим, что для решения не хватает значения косинуса альфа. Найдем косинус альфа с помощью основного тригонометрического тождества: (cosa)^2+(sina)^2=1. (cosa)^2=1-9/25=16/25, значит cosa равен либо 4/5, либо -4/5. Угол альфа лежит в первой четверти, где косинус положителен, значит косинус альфа равен 4/5, тогда искомое выражение равно (кореньиздвух/2)*4/5+(кореньиздвух/2)*3/5=(7*кореньиздвух)/10

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.