Геометрия, опубликовано 2018-08-22 00:26:35 by Гость
Длины сторон остроугольного треугольника – последовательные целые числа. Докажите, что высота, опущенная на среднюю по величине сторону, делит её на отрезки, разность длин которых равна 4.
Ответ оставил Гость
Пусть стороны треугольника равны n-1 , n и n+1, отрезки,на которые высота делит основание, -x и y,высота -h .
Тогда (y-x)n=(y-x)(y+x)=y^2-x^2=(y^2+h^2)-(x^2+h^2)=(n+1)^2-(n-1)^2=4n
Отсюда y-x=4
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на