Геометрия, опубликовано 2018-08-22 00:30:43 by Гость
Основание прямой призмы - прямоугольный треугольник,один из катетов которого равен 5см, а длина диагонали грани,содержащей этот катет, равен 10 см. Вычислите радиус окружности описанной около основания, если объем призмы равен 125 см
Ответ оставил Гость
Рассмотрим треугольник, образованный катетом, диагональю грани, содержащей этот катет боковым ребром призмы.
призма прямая, значит боковое ребро является высотой призмы
по теореме Пифагора Н=√10²-5²=5*√3
V=1/3S*H - формула объема призмы, подставляем известные величины V , H Находим S = (3*125*√3)/(25*√3)=15
площадь прямоугольного треугольника равна половине произведения его катетов, находим второй катет b=30/5=6
по теор Пифагора находим гипотенузу основания с=√5²+6²=√61
радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы. R=1/2√61
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на