Геометрия, опубликовано 2018-08-22 00:55:12 by Гость

2.54. В треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A. Докажите, что DABC ~ DHB1C1. ПОМОГИТЕ

Ответ оставил Гость

Четырехугольник BB1AH имеет два прямых угла. Поэтому можно построить окружность на AB, как на диаметре, и точки B1 и H попадут на эту окружность.
Это означает, что углы HBA и HB1A вписанные и опираются на дугу AH этой окружности, то есть они равны.
Точно также можно рассмотреть четырехугольник AC1CH и доказать равенство углов HCA и HC1A.
(То есть AH является общей хордой двух окружностей, построенных на AB и AC, как на диаметрах, и каждая из точек B1 и C1 лежит на одной из них)
Получилось, что у треугольников ABC и HB1C1 углы равны (по крайней мере два :))) ). То есть они подобны.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.