Геометрия, опубликовано 2018-08-22 01:11:54 by Гость
На отрезке АВ выбрана точка С так, что АС=80 и ВС=2. Построена окружность с центром А, проходящая через С. Найдите длину отрезка касательной, проведённой из точки В к этой окружности.
Ответ оставил Гость
Если из точки, лежащей вне окружности, проведены касательнаяи секущая, то квадрат длины касательной равен произведениюсекущей на ее внешнюю часть
АС это радиус окружности.
Длина секущей, проведённой из точки В равна 80+80+2=162.
Длина внешней части секущей равна 2.
K^2=162*2=324
K=18
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на