Геометрия, опубликовано 2018-08-22 01:37:46 by Гость
Из пункта к плоскости проведены две наклонные . найдите длину наклонных когда они относятся друг к другу как 1:2, а длины атповедных к ним проекцый на даную плоскасть равны 1см,7см
Ответ оставил Гость
Расстояние Н от точки А, из которой проведены наклонные до плоскости одинаковое для обеих наклонных.
Пусть длина одной наклонной равна х, тогда длина другой наклонной 2х
Н² = х² - 1² -теорема Пифагора для 1-й наклонной
Н² = 4х² - 49 - теорема Пифагора для 2-й наклонной
Приравняем их
х² - 1 = 4х² - 49
3х² = 48
х² = 16
х = 4
2х = 8
Ответ: длины наклонных равны 4см и 8см
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на