Геометрия, опубликовано 2018-08-22 13:59:25 by Гость
Докажите, что если биссектриса внешнего угла параллельна стороне треугольника, то треугольник равнобедренный
Ответ оставил Гость
Допустим, внутренний угол треугольника "a"
Внешний угол треугольника = 180-a
Биссектриса делит его пополам, т. е. половинки угла = (180-а) /2
А в самом треугольнике другие 2 угла, кроме a в сумме тоже равны 180-а, т. к. сумма углов в треугольнике = 180
Если биссектриса угла параллельна стороне треугольника, значит, половина внешнего угла = углу при основании. А следовательно, вторая половина = другому углу при основании.
А если углы при основании равны, треугольник равнобедренный!
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на