Геометрия, опубликовано 2018-08-22 14:18:44 by Гость

Дано прямоугольный треугольник, катеты которого равны 7 см и 24 см. С вершины прямого угла этого треугольника к плоскости B, которая проходит через его гипотенузу, проведено перпендикуляр. Найдите длину этого перпендикуляра, если расстояние от его основания до гипотенузы равно 84/25 см .

Ответ оставил Гость

Гипотенуза треугольника равна √(7²+24²) = √(49+576) = √625 = 25 см.
Высоту этого треугольника на гипотенузу найдём из пропорции на основе подобия прямоугольных треугольников:
h / 7 = 24 / 25
h = 7*24 / 25 = 168 / 25 = 6,72.
Расстояние до плоскости В - это катет треугольника, в котором гипотенуза - высота первого треугольника:
H = √((168/25)²-(84/25)²) = 145.49/25 = 5.82 см.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.