Геометрия, опубликовано 2018-08-22 14:31:32 by Гость
Основание пирамиды ромб со стороной 12 м и острым углом 60 градусов . Двугранный углы при основании пирамиды равны 45 градусов . Вычислите длину высоты пирамиды
Ответ оставил Гость
Угол 60, значит диагональ его делит на два по 30
обозначим один из получившихся треугольников в основании АВС, он прямоугольный по св-ву ромба, уголА=30, значит ВС=1/2АВ=1/2*12=6(см)
по среднему геометрическому СВ=√АВ*СН, СН- высота к АВ, значит 6=√12*ВН, ВН=3
в треугол СНВ, по теор Пифагора СН=√ СВ²-НВ²=√27=3√3
Отсюда, т.к. двугранный угол равен 45, значит треугольник через вершину пирамиды М, треугол МСН - р/б и МС=СН=3√3(см)
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на