Геометрия, опубликовано 2018-08-22 14:56:02 by Гость

СРОЧНО Помогите!!!!!!!!!! ДАЮ 30 баллов На рисунке 147 прямые m и n -серединные перпендикуляры сторон ab и ac треугольника abc .Докажите что точка О равноудалена от всех вершин данного треугольника

Ответ оставил Гость

 Проведём серединные перпендикуляры к сторонам AB и AC треугольника ABC. Они пересекаются, так как перпендикулярные им прямые AB и AC пересекаются. 
  Пусть O – точка пересечения серединных перпендикуляров к сторонам AB и AC. Тогда по свойству серединного перпендикуляра к отрезку 
OA = OB  и  OA = OC,  поэтому  OB = OC.  Значит, точка O лежит на серединном перпендикуляре к отрезку BC, то есть серединный перпендикуляр к стороне BC также проходит через точкуO.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.