Геометрия, опубликовано 2018-08-22 15:01:08 by Гость

Длины ребер AB AA1 и AD прямоугольного параллелепипеда ABCDA1B1C1D1 равны соответственно 12 16 и 15 найдите расстояние от вершины А1 до прямой BD1

Ответ оставил Гость

Рассмотрим треугольник А1BD1. Искомое расстояние будет длиной высоты этого треугольника, опущенной из вершины А1 на сторону BD1.
Для этого треугольника имеем: А1D1 = 15 (из условия)
А1В - гипотенуза прямоугольного треугольника А1АВ. Поскольку (из условия) катеты этого треугольника равны АА1=16, АВ=12, получаем А1В = квадратный корень(АА1^2 + AB^2) = кв. корень (16*16 +12*12) = кв. корень(400) = 20. Далее, поскольку А1D1 - сторона прямоугольного параллелепипеда, а A1B лежит на грани этого параллелепипеда, A1D1 перпендикулярна A1B, как и любой прямой, лежащей на этой грани. Следовательно, треугольник А1BD1 прямоугольный. Поскоьку его катеты А1В = 20 и А1D1 = 15, BD1 = кв. корень(A1B ^ 2 + A1D1 ^ 2) = 25.
Теперь опустим из вершины А1 на сторону BD1 высоту A1O. Тогда треугольник A1OD1 подобен треугольнику BA1D1 и значит A1O / A1D1 = A1B / BD1 = 4/5. Поскольку A1D1=15, A1O = 4/5 * 15 = 12
Ответ: расстояние от вершины А1 до прямой BD1 равно 12

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.