Геометрия, опубликовано 2018-08-22 15:06:34 by Гость

В трапеции ABCD диагонали пересекаются в точке О. Найдите площадь треугольника АОВ, если боковая сторона CD трапеции равна 12 см, а расстояние от точки О до прямой CD равно 5 см.

Ответ оставил Гость

Расстояние от точки О допрямой СД (назовем этот отрезок ОЕ) является высотой треугольника СОД.Площадь треугольника СОД=(СД*ОЕ)/2=(12*5)/2=30кв.см.Так как треугольники образованныебоковыми сторонами и диагоналями трапеции, имеют равные площади, то площадьтреугольника S(aob)=S(cod)=30 кв. см.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.