Геометрия, опубликовано 2018-08-22 15:28:23 by Гость

.Периметр равнобедренного треугольника равен 18 см. Какими должны быть его стороны, чтобы площадь треугольника была наибольшей?

Ответ оставил Гость

Пусть основание равно х, тогда боковые стороны (18-х)/2
Проведем высоту на основание.
По теореме Пифагора
h²=((18-x)/2)²-(х/2)²=81-9х
Найдем S как функцию, зависящую от х

S(х)=(1/2)x·√(81-9x)
Исследуем функцию на экстремум.
Область определения
(0; 9)
Найдем производную.
S`(x)=(1/2)√(81-9х) +(1/2)х·(-9/2√(81-9х))=(81-18х)/2√(81-9х)
S`(x)=0
81-18x=0
x=81/18
х=4,5
Исследуем знак производной
S`(2)>0
S`(5)При переходе через точку х=4,5 производная меняет знак  с + на _
Значит х=4,5 - точка максимума

Основание 4,5 см. боковые стороны (18-4,5)/2=6,75

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.