Геометрия, опубликовано 2018-08-22 15:32:48 by Гость

На продолжении диагонали АС ромба ABCD взята произвольная точка М, которая соединена отрезком с вершиной В. Докажите, что АМ ⋅ СМ = MB^2 - AB^2.

Ответ оставил Гость

Для начала нужно провести вторую диагональ ВД, которая пересекается с первой АС посередине в точке О под углом равный 90 градусов. Получим реугольник BOM -прямоугольный. По теореме Пифагора
BO2 +OM2 = BM2
или
BO2 + (OC + CM)2 = BM2
BO2 + OC2 + 2*OC*CM + CM2 = BM2
Группируем
(BO2 + OC2) + CM*(2*OC + CM) = BM2
Получаем
BC2 + CM*(AC + CM) = BM2
или
AB2 + CM*AM = BM2

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.