Геометрия, опубликовано 2018-08-22 16:06:58 by Гость

Диагонали ромба относятся как 10:24.Периметр ромба равен 52.Найдите высоту ромба

Ответ оставил Гость

Р( ромба)=4а, а - сторона ромба
4а=52
а=13 см
Пусть одна диагональ 10х, вторая 24х, их отношение 10х:24х=10:24
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и делят ромб на 4 равных прямоугольных треугольника.
По теореме Пифагора
(5х)²+(12х)²=13²    ⇒  169х²=169  ⇒ 
х²=1
х=1
Значит d₁ = 10х=10 см; d₂=24х=24 см
S(ромба)=d₁·d₂/2
S(ромба)=a·h

d₁·d₂=2a·h
h=10·24:26=240/26=120/13

h=9 целых 3/13 см

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.