Геометрия, опубликовано 2018-08-22 16:35:45 by Гость

Периметр прямоугольника равен 62, а диагональ равна 25. Найдите площадь этого прямоугольника

Ответ оставил Гость

Сумма двух соседних сторон треугольника равна половине периметра, то есть, 62/2=31. Обозначим соседние стороны треугольника за x и 31-x. Рассмотрим прямоугольный треугольник, состоящий из двух соседних сторон прямоугольника и его диагонали. По теореме Пифагора, x²+(31-x)²=25², 2x²-62x+961=625, 2x²-62x+336=0, x²-31x+168=0. Решим это квадратное уравнение: D=31²-168*4=289, x1=(31-17)/2=7, x2=(31+17)/2=24. Значит, стороны прямоугольника равны 7 и 24 (во втором случае 24 и 7, что одно и то же). Площадь прямоугольника равна произведению сторон, то есть, 7*24=168.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.