Геометрия, опубликовано 2018-08-22 17:58:55 by Гость

В прямоугольном треугольнике ABC из произвольной точки E катета AC опущен перпендикуляр ED на гипотенузу AB. DE=2, BC=4. Площадь треугольника ADE равна 5. Найдите площадь треугольника ABC.

Ответ оставил Гость

Прямоугольные ΔАДЕ и ΔАСВ подобны по острому углу: угол А-общий (если прямоугольные треугольники имеют по равному острому углу, то такие треугольники подобны) с коэффициентом подобия к=ВС/ДЕ=4/2=2
Отношение площадей подобных треугольников равно квадрату коэффициента подобия:
Sасв/Sаде= к²=4
Sасв=4Sаде=4*5=20

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.