Геометрия, опубликовано 2018-08-22 18:47:30 by Гость

Через концы диаметра окружности проведены две хорды, пересекающиеся на окружности и равные 12 и 16. Найдите расстояние от центра окружности до этих хорд.

Ответ оставил Гость

Пусть AB — диаметр окружности, AM = 12 и BM = 16 — данные хорды. Опустим перпендикуляры OP и OQ на хорды AM и BM соответственно. Поскольку диаметр, перпендикулярный хорде, делит её пополам, то точки P и Q— середины этих хорд, а т.к. O — середина AB, то OP и OQ — средние линии треугольника AMB. Следовательно,OP = BM = 8, OQ = AM = 6.

Ответ:
8 и 6.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.