Геометрия, опубликовано 2018-08-22 19:05:06 by Гость

Докажите, что биссектрисы острых острых углов прямоугольного треугольника пересекаются под углом 45 градусов.

Ответ оставил Гость

Пусть ABC - прямоугольный треугольник, угол C - прямой. Из вершин A и B проведены биссектрисы пересекающиеся в точке О. Биссектриса из A пересекает сторону BC в точке N, биссектриса из B сторону AC в точке M.
Сумма острых углов прямоугольного треугольника равна 90 градусов. Значит, сумма углов, образованных биссектрисами, равна 90:2 = 45 градусов. Тогда в треугольнике AOB угол O равен 180-45 = 135 градусов. Углы BON и AOM равны 180-135 = 45 градусов, как смежные.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.