Геометрия, опубликовано 2018-08-22 19:26:58 by Гость

1)Докажите, что если окружности радиусов r и R с центрами O1 и O2 касаются внешним образом в точке K , а прямая касается этих окружностей в различных точках A и B и пересекается с общей касательной, проходящей через точку K , в точке C, то ∠ AKB =90 и ∠ O1CO2= 90 , а отрезок AB общей внешней касательной окружностей равен отрезку общей внутренней касательной, заключённому между общими внешними, и равен 2 Rr . 2) Докажите, что если прямые, проходящие через точку A, касаются окружности S в точках B и C, то центр вписанной окружности треугольника ABC лежит на окружности S .

Ответ оставил Гость

Решение.
Возможны два случая взаимного расположения прямой и окружностей.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.