Аватар
Геометрия, опубликовано 2018-08-22 21:37:07 by Гость

Биссектрисы углов A и B трапеции ABCD пересекаются в точке K, лежащей на стороне CD. Докажите, что точка K равноудалена от прямых AB, BC и CD.

Аватар
Ответ оставил Гость

Скорее всего в условии имелось в виду, что точка К равноудалена от АВ, ВС и АD. Потому что CD не может быть в вопросе, ведь точка К лежит на ней!!!
Если речь идет о сторонах АВ, ВС и АD, тогда необходимо в треугольниках КВС, КВА и КАD провести три высоты (поскольку речь идет о равноудаленности, а расстояние от точки до прямой определяется длиной перпендикуляра, опущенного из данной точки на соответствующую прямую.)
Итак, пусть KF - высота в треугольнике КВС, КТ - высота в треугольнике КВА, КМ - высота в треугольнике KAD.
1) Рассмотрим треугольники KFB и KBT. Они прямоугольные. А т.к. КВ - общая у них сторона и КВ - биссектриса угла АВС, то получаем, что угол BKF = углу ТКВ. А значит эти треугольники равны (по 2-му признаку).
2) Аналогично доказывается равенство треугольников КТА и КМА.
3) Из равенств треугольников следует равенство соответствующих сторон. Значит, KF = KT = KM, следовательно точка К равноудалена от указанных сторон. Ч.т.д.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.