Аватар
Геометрия, опубликовано 2018-08-22 22:50:42 by Гость

"Запишите уравнение окружности радиусом см 5, которая проходит через точку (-1; 6) , а еѐ центр находится на биссектрисе первой координатной четверти.

Аватар
Ответ оставил Гость


По условию есть некоторая точка A  (-1;6),  через которую проходит окружность R=5

Уравнение окружности с центром в точке (a;b) имеет вид:

(x-a)^2+(y-b)^2=R^2

Учитывая, что центр окружности находится на биссектрисе первой координатной четверти, то a/ /textgreater / 0,  b/ /textgreater / 0 и a=b

Тогда подставим в уравнение окружности:

(-1-a)^2+(6-a)^2=5^2

(1+a)^2+(6-a)^2=25

1+2a+a^2+36-12a+a^2=25

1+2a+a^2+36-12a+a^2-25=0

2a^2-10a+12=0

a^2-5a+6=0

D=(-5)^2-4*1*6=25-24=1

a_1= /frac{5+1}{2} =3

a_2= /frac{5-1}{2} =2

(2;2)  и (3;3) - центры искомых окружностей.

Подставим в общее уравнение окружности  и получим искомые уравнения окружностей:

(x-2)^2+(y-2)^2=25

(x-3)^2+(y-3)^2=25

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.